首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4064篇
  免费   350篇
  国内免费   329篇
电工技术   90篇
综合类   168篇
化学工业   733篇
金属工艺   688篇
机械仪表   221篇
建筑科学   158篇
矿业工程   31篇
能源动力   166篇
轻工业   105篇
水利工程   47篇
石油天然气   39篇
武器工业   26篇
无线电   397篇
一般工业技术   1026篇
冶金工业   292篇
原子能技术   90篇
自动化技术   466篇
  2024年   16篇
  2023年   149篇
  2022年   166篇
  2021年   226篇
  2020年   160篇
  2019年   112篇
  2018年   135篇
  2017年   126篇
  2016年   126篇
  2015年   122篇
  2014年   189篇
  2013年   224篇
  2012年   224篇
  2011年   334篇
  2010年   201篇
  2009年   197篇
  2008年   202篇
  2007年   212篇
  2006年   198篇
  2005年   148篇
  2004年   155篇
  2003年   152篇
  2002年   128篇
  2001年   117篇
  2000年   99篇
  1999年   81篇
  1998年   91篇
  1997年   81篇
  1996年   42篇
  1995年   56篇
  1994年   34篇
  1993年   37篇
  1992年   38篇
  1991年   45篇
  1990年   59篇
  1989年   19篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1975年   3篇
  1964年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有4743条查询结果,搜索用时 15 毫秒
81.
82.
83.
We have studied the defects introduced in n-type 4H-SiC during electron beam deposition (EBD) of tungsten by deep-level transient spectroscopy (DLTS). The results from current-voltage and capacitance-voltage measurements showed deviations from ideality due to damage, but were still well suited to a DLTS study. We compared the electrical properties of six electrically active defects observed in EBD Schottky barrier diodes with those introduced in resistively evaporated material on the same material, as-grown, as well as after high energy electron irradiation (HEEI). We observed that EBD introduced two electrically active defects with energies EC – 0.42 and EC – 0.70 eV in the 4H-SiC at and near the interface with the tungsten. The defects introduced by EBD had properties similar to defect attributed to the silicon or carbon vacancy, introduced during HEEI of 4H-SiC. EBD was also responsible for the increase in concentration of a defect attributed to nitrogen impurities (EC – 0.10) as well as a defect linked to the carbon vacancy (EC – 0.67). Annealing at 400 °C in Ar ambient removed these two defects introduced during the EBD.  相似文献   
84.
Recent findings about the role of the grain boundary energy in complexion transitions are reviewed. Grain boundary energy distributions are most commonly evaluated using measurements of grain boundary thermal grooves. The measurements demonstrate that when a stable high temperature complexion co-exists with a metastable low temperature complexion, the stable complexion has a lower energy. It has also been found that the changes in the grain boundary energy lead to changes in the grain boundary character distribution. Finally, recent experimental observations are consistent with the theoretical prediction that higher energy grain boundaries transform at lower temperatures than relatively lower energy grain boundaries. To better control microstructures developed through grain growth, it is necessary to learn more about the mechanism and kinetics of complexion transitions.  相似文献   
85.
《Ceramics International》2016,42(9):11248-11255
Nanostructured hydroxyapatite (HA)–graphene nanosheet (GN) composites have been fabricated by spark plasma sintering consolidation. Nanostructual evolution of the bioceramic-based composites during further high temperature heat treatment is characterized and enhanced mechanical strength is assessed. GN keeps intact after the treatment and its presence at HA grain boundaries effectively inhibits HA grain growth by impeding interconnection of individual HA grains. Microstructural characterization discloses strong coherent interfaces between GN and the (300) plane of HA crystals. This particular matching state in the composites agrees well with the competitive theoretical pull-out energy for single graphene sheet being departed from HA matrix. The toughening regimes that operate in HA–GN composites at high temperatures give clear insight into potential applications of GN for ceramic matrix composites.  相似文献   
86.
In this work, Ce:HfOx films were fabricated and the resistive switching characteristics were investigated. The chemical bonding states of the films were explored by X-ray photoelectron spectroscopy. The annealing process was carried out to modulate the concentration of oxygen vacancies in the film to confirm the dominant role of oxygen vacancies on resistive switching behaviors, which resulted in the elimination of unstable oxygen vacancies and the introduction of oxygen vacancy near Ce dopants due to the reduction of Ce4+. Benefiting from the oxygen vacancies near Ce dopants, stable resistive switching performance can be achieved for the annealed Ce:HfOx sample. A schematic diagram based on the formation and rupture of oxygen vacancy filaments was proposed to illustrate the switching behaviors of annealed Ce:HfOx sample.  相似文献   
87.
Here, phase transformation and electrochemical characteristics of non-stoichiometry La4MgNix (x = 16, 17 and 18) hydrogen storage alloys were studied. It is found that after annealed at 1223 K for 24 h, the minor AB3 and AB5 phases in La4MgNi16 alloy transform into A2B7 phase by a peritectic reaction and the La4MgNi16 alloy shows a A2B7 single phase structure. Double phase structures of A2B7/A5B19 are obtained in La4MgNi17 and La4MgNi18 alloys after annealed at the same condition. The abundance of A5B19 phase increases as x increases, indicating the increasing x value contributes to the formation of A5B19 phases. Electrochemical studies show that the maximum discharge capacity and capacity retention at the 100th charge/discharge cycles (S100) of A2B7 single phase La4MgNi16 alloy is 373 mAh g−1 and 78.4%, respectively. The appearance of A5B19 (minor) phase in the La4MgNi17 alloy makes a remarkable improvement in the discharge capacity from 373 mAh g−1 to 388.8 mAh g−1, as well as the S100 from 78.4% to 90.1%. It is believed that the LaMgNi-based alloy with the A2B7(main)/A5B19(minor) phase structure possesses the good overall electrochemical properties and is applicable to the high-power and long-cycle life negative electrode material for nickel metal hydride batteries.  相似文献   
88.
Uniform-sized orthorhombic MoO3 nanoribbons were synthesized by a simple hydrothermal method at 240 °C. The nanoribbons grew along the [001] orientation, with average length, width and thickness of approximately 20 μm, 270 nm and 90 nm, respectively. The obtained nanoribbons were further annealed in a hydrogen atmosphere at different temperatures to modify their surface states. The treatment of the nanoribbons at 300 °C significantly elevated the concentration of non-stoichiometric Mo5+ to 24.7%, much larger than the original concentration (∼14.8%). A positive relationship was found between the non-stoichiometric Mo5+, chemisorbed oxygen ion and sensor response. The sensor based on the MoO3 nanoribbons treated at 300 °C exhibited a faster response time of approximately 10.9 s, and a higher sensor response of 17.3 towards 1000 ppm H2, compared with the results of original tests (∼21 s and ∼5.7, respectively), indicating the significantly improved gas sensing performance of the treated MoO3. Meanwhile, the sensor also exhibited excellent repeatability and selectivity toward hydrogen gas. The enhancement of the hydrogen gas sensing performance of treated MoO3 nanoribbons was attributed to the more effective adjustment of the width of the depletion region on the nanoribbon surface and the height of the potential barrier at the junctions, induced by the interaction between hydrogen molecules and higher-concentration oxygen ions. Our research implied that the gas sensing performance of nanostructured metal oxides could be successfully enhanced through annealing in the reducing gas.  相似文献   
89.
We study the effect of grain size of austenitic and ferritic phases and volume fraction of δ-ferrite, which were obtained in different solution-treatment regimes (at 1050, 1100, 1150 and 1200 °C), on hydrogen embrittlement of high-nitrogen steel (HNS). The amount of dissolved hydrogen is similar for the specimens with different densities of interphase (γ-austenite/δ-ferrite) and intergranular (γ-austenite/γ-austenite, δ-ferrite/δ-ferrite) boundaries. Despite, the susceptibility of the specimens to hydrogen embrittlement, depth of the hydrogen-assisted surface layers, hydrogen transport during tensile tests and mechanisms of the hydrogen-induced brittle fracture all depend on grain size and ferrite content. The highest hydrogen embrittlement index IH = 32%, the widest hydrogen-affected layer and a pronounced solid-solution hardening by hydrogen atoms is typical of the specimens with the lowest fraction of the boundaries. Even though fast hydrogen transport via coarse ferritic grains provides longer diffusion paths during H-changing, the width of the H-affected surface layer in the dual-phase structure of the HNS specimens is mainly determined by the hydrogen diffusivity in austenite. In tension, hydrogen transport with dislocations increases with the decrease in density of boundaries due to the longer dislocation free path, but stress-assisted diffusion transport does not depend on grain size and ferrite fraction. The contribution from intergranular fracture increases with an increase in the density of intergranular and interphase boundaries.  相似文献   
90.
Herein, a novel hierarchical TiO2 pinecone-like structure (TPS) has been successfully fabricated for the first time by self-assembling anodic oxidation methods on the Ti plate. Then it was constructed that a series of CdS-TPS nanocomposites with different cycles CdS modifying by a successive ionic layer adsorption and reaction (SILAR) after different temperature annealing in air. The structures and properties of the CdS-TPS were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Current-voltage (I-V), ultraviolet-visible (UV–vis/DRS). The results shown that the optical properties of the CdS-TPS could be rationally tailored by adjusting the CdS-modified cycles and annealing temperature, which significantly enhanced photocatalytic activity. To be used in photocatalytic organic pollutant removal after optimizing both the CdS modification cycles and annealing temperature. The 15-CdS-TPS-500?°C exhibited significantly improved photocatalytic activities of methyl orange (MO) degradation under simulated sunlight irradiation. With 180?min, 85% of the MO (0.05?mM/L, 5?mL) was photodegraded and its kinetic constant reached to 0.0104?min?1, which is the 3.0 times and 3.6 times quicker than that of 5-CdS-TPS-500?°C and 15-CdS-TPS-0?°C, respectively. This could be ascribed to the result of the synergy effects of the suitable quantity of CdS nanoparticles modifier, the special surface structure, excellent crystallinity, higher electrical conductivity, and band structure matching. The possible photocatalytic mechanism of the CdS-TPS sample is investigated as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号